以下是从网络上摘取的一些缓存一致性方案,供参考。
产生原因
主要有两种情况,会导致缓存和 DB 的一致性问题:
- 并发的场景下,导致读取老的 DB 数据,更新到缓存中。
- 缓存和 DB 的操作,不在一个事务中,可能只有一个操作成功,而另一个操作失败,导致不一致。
当然,有一点我们要注意,缓存和 DB 的一致性,我们指的更多的是最终一致性。我们使用缓存只要是提高读操作的性能,真正在写操作的业务逻辑,还是以数据库为准。例如说,我们可能缓存用户钱包的余额在缓存中,在前端查询钱包余额时,读取缓存,在使用钱包余额时,读取数据库。
更新缓存的设计模式
1.Cache Aside Pattern(旁路缓存)
这是最常用最常用的pattern了。其具体逻辑如下:
- 失效:应用程序先从cache取数据,没有得到,则从数据库中取数据,成功后,放到缓存中。
- 命中:应用程序从cache中取数据,取到后返回。
- 更新:先把数据存到数据库中,成功后,再让缓存失效。
一个是查询操作,一个是更新操作的并发,首先,没有了删除cache数据的操作了,而是先更新了数据库中的数据,此时,缓存依然有效,所以,并发的查询操作拿的是没有更新的数据,但是,更新操作马上让缓存的失效了,后续的查询操作再把数据从数据库中拉出来。而不会像文章开头的那个逻辑产生的问题,后续的查询操作一直都在取老的数据。
要么通过2PC或是Paxos协议保证一致性,要么就是拼命的降低并发时脏数据的概率,而Facebook使用了这个降低概率的玩法,因为2PC太慢,而Paxos太复杂。当然,最好还是为缓存设置上过期时间。
2.Read/Write Through Pattern
在上面的Cache Aside套路中,我们的应用代码需要维护两个数据存储,一个是缓存(Cache),一个是数据库(Repository)。所以,应用程序比较啰嗦。而Read/Write Through套路是把更新数据库(Repository)的操作由缓存自己代理了,所以,对于应用层来说,就简单很多了。可以理解为,应用认为后端就是一个单一的存储,而存储自己维护自己的Cache。
Read Through
Read Through 套路就是在查询操作中更新缓存,也就是说,当缓存失效的时候(过期或LRU换出),Cache Aside是由调用方负责把数据加载入缓存,而Read Through则用缓存服务自己来加载,从而对应用方是透明的。
Write Through
Write Through 套路和Read Through相仿,不过是在更新数据时发生。当有数据更新的时候,如果没有命中缓存,直接更新数据库,然后返回。如果命中了缓存,则更新缓存,然后再由Cache自己更新数据库(这是一个同步操作)
下图自来Wikipedia的Cache词条。其中的Memory你可以理解为就是我们例子里的数据库。
3.Write Behind Caching Pattern
Write Behind 又叫 Write Back。write back就是Linux文件系统的Page Cache的算法。
Write Back套路,一句说就是,在更新数据的时候,只更新缓存,不更新数据库,而我们的缓存会异步地批量更新数据库。
这个设计的好处就是让数据的I/O操作飞快无比(因为直接操作内存嘛 ),因为异步,write back还可以合并对同一个数据的多次操作,所以性能的提高是相当可观的。
但是,其带来的问题是,数据不是强一致性的,而且可能会丢失(我们知道Unix/Linux非正常关机会导致数据丢失,就是因为这个事)。在软件设计上,我们基本上不可能做出一个没有缺陷的设计,就像算法设计中的时间换空间,空间换时间一个道理,有时候,强一致性和高性能,高可用和高性性是有冲突的。软件设计从来都是取舍Trade-Off。
另外,Write Back实现逻辑比较复杂,因为他需要track有哪数据是被更新了的,需要刷到持久层上。操作系统的write back会在仅当这个cache需要失效的时候,才会被真正持久起来,比如,内存不够了,或是进程退出了等情况,这又叫lazy write。
在wikipedia上有一张write back的流程图,基本逻辑如下: